

In collaboration with Peter Blunden (Manitoba) and Wally Melnitchouk (Jefferson Lab)

Axial Structure Functions

$$F_{3,N}^{\gamma Z} = \bigvee_{N} \bigvee_{N}$$

$$F_3^{(0)} = F_{3,p}^{\gamma Z} - F_{3,n}^{\gamma Z}$$

$$F_3^{(0)} = F_{3,p}^{\gamma Z} + F_{3,n}^{\gamma Z}$$

$$F_3^{(0)} = F_3^{\gamma Z} + F_{3,n}^{\gamma Z}$$

$$F_3^{(0)} \equiv F_3^{\gamma^{(0)}W}$$

• 4 SF's, 2 equations express any 2 SF's in terms of the other 2

- all are constrained by PDFs at high Q, but only $F_3^{\nu p + \bar{\nu} p}$ has experimental constraints at low Q
- has been previously modeled for the PV $\ \Box_A^{\gamma Z}$ used for Qweak.

CKM Unitarity

- The Yukawa couplings between the quarks and Higgs fields is allowed to mix generations.
- One can then perform a basis change of the quark generations to diagonalize those terms.
- The cost is that we complicate the charged current interaction:

$$\frac{-g}{\sqrt{2}}(\overline{u_L}, \overline{c_L}, \overline{t_L})\gamma^{\mu} W_{\mu}^{+} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.} \qquad V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- The CKM matrix elements act like coupling constants between the W boson and two left-handed quarks of opposite isospin projection.
- Its unitarity means the sum of the squares of the top row elements is 1:

1 Loop Effects on Superallowed Fermi Transitions:

Master formula relating V_{ud} to lifetime measurements:

$$|V_{ud}|^2 = \frac{2984.43s}{\mathcal{F}t(1+\Delta_R^V)}$$

Note: several universal RCs are common to both beta and muon decay and these cancel in

$$|V_{ud}|^2 \sim \frac{\text{beta decay}}{\text{muon decay}}$$

 $\mathcal{F}t$ is a product of the statistical decay rate factor and decay lifetime and contains nuclear-dependent RCs

Nucleus-independent RCs:
$$\Delta_R^V = \frac{\alpha}{2\pi} \left[3 \ln \frac{M_W}{M_p} - 4 \ln c_W \right] + 2 \Box_A^{\gamma W}$$
 axial current interaction

Sirlin 1978:
$$\Box_A^{\gamma W} = \frac{\alpha}{4\pi} \left[\ln \frac{M_W}{M_A} + 2C_{Born} + A_g \right]$$

Marciano 2006:
$$\Box_A^{\gamma W} = \tfrac{\alpha}{8\pi} \int_0^\infty \tfrac{M_W^2}{Q^2 + M_W^2} F(Q^2) dQ^2$$

form factor models hadron

Dispersion Relations in QFT

Cutkosky Cutting Rule:

$$\operatorname{Im} M(s) = -\frac{1}{2} \operatorname{Disc} M(s)$$

- cutting the diagram at the intermediate state, placing the intermediate state virtual particles on their mass shell
- sum over all possible phase space of these on shell particles

Cauchy's Integral theorem:
$$\Box(s_0) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{\Box(s)}{s-s_0} ds$$

If a function has an analytical structure in the complex plane, application of the Cauchy integral theorem using an appropriate contour can yield a Dispersion Relation.

Dispersion Relation for the $\,\gamma W$ Box

$$V_{e} \xrightarrow{l} e^{-}$$

$$M_{\text{Box}}^{\gamma W} = W^{+} \qquad \qquad \downarrow \gamma \qquad \downarrow q \approx 0$$

$$n \xrightarrow{p} p$$

$$M_{\gamma W}^{\text{Box}}|_{\text{fwd}} = \frac{-ig^2 e^2}{2M_W^2} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 (1-k^2/M_W^2)} \bar{u}_e(l) \gamma_\lambda \frac{\not k - \not l + m_e}{(l-k)^2 - m_e^2} \gamma_\rho P_L u_\nu(l) T_{(\gamma)}^{\lambda\rho}(k)$$

Numerator can be written as: $L^{\gamma W}_{\mu\nu}H^{\mu\nu}_{\gamma W}$

For on-shell states, hadronic tensor involves structure functions:

$$H^{\mu\nu}_{\gamma W} = 4\pi \Big[\Big(-g^{\mu\nu} + \frac{k^\mu k^\nu}{k^2} \Big) F_1^{\gamma W} + \frac{p^\mu p^\nu}{p \cdot k} F_2^{\gamma W} + \underbrace{\frac{i\epsilon^{\mu\nu\alpha\beta}p_\alpha k_\beta}{2p \cdot k} F_3^{\gamma W}}_{\text{only need axial piece}} \Big]$$

The axial part of the gW box correction is odd with respect to the neutrino's incident energy E:

$$\Rightarrow \operatorname{Re}\Box_{\gamma W}^{(A)}(E) = \frac{2}{\pi} \int_{\nu_{\pi}}^{\infty} dE' \frac{E'}{E'^2 - E^2} \operatorname{Im}\Box_{\gamma W}^{(A)}(E')$$

$$\Box_{\gamma W}^{(A)} = \frac{\alpha}{2\pi} \int_{W_{\pi}^{2}}^{\infty} dW^{2} \int_{0}^{\infty} dQ^{2} \frac{F_{3}^{\gamma W}(W^{2}, Q^{2})}{1 + Q^{2}/M_{W}^{2}} \frac{1}{ME_{min}} \left(\frac{2}{\chi} - \frac{1}{4ME_{min}}\right)$$

Depends on knowledge of the F_3 structure function at all W^2 and Q^2 .

Kinematical Regions of $\,F_3^{\gamma W}$

- ullet One needs different models for $\,F_3\,$ for different regions in the plane.
- The dispersion weight favours small W^2 and \mathbb{Q}^2 .
- The structure function should be continuous at the (moveable)
 boundaries, and the final box correction insensitive to their choice.

Elastic Contribution:

Important note: the dispersion treatment doesn't add anything new to the loop calculation of the elastic contribution

Resonance Contributions:

Origin: the first exchanged vector boson in the box diagrams can excite the neutron into an excited resonance state

the photon has an isovector (V) and an isoscalar (S) component W boson only has isovector (V)

$$R = P_{11}(1440), D_{13}(1520), S_{11}(1535), \dots$$

We can use the Lalakulich or MAID helicity amplitudes to find F_3 from these resonances. example: Lalakulich D_{13}

$$F_3^{\gamma W}(D_{13}) = -\frac{4\nu}{3M} \left[-C_4^S(Q^2 - \nu M) + C_5^S \nu M + C_3^S \frac{M}{M_R} \left(2M_R^2 - 2MM_R + Q^2 - \nu M \right) \right] C_5^A \Gamma_R(W, M_R)$$

Using MAID:

Resonance	$\square_{A,res}^{\gamma W}(\times 10^{-3})$
D_{13}	0.054
P_{11}	-0.009
S_{11}	-0.002
total	0.04

 $C_i^{A,S}$ are form factors found from scattering data

DIS Contribution:

High Q^2 means the hadron looks like individual free quarks, so we use pQCD and factorization:

$$\Box_{\gamma W}^{\text{A(DIS)}} = \frac{1}{2\pi} \int_{Q_0^2}^{\infty} dQ^2 \frac{\alpha_{EM}(Q^2)}{Q^2(1+Q^2/M_W^2)} \int_0^{x_{\text{max}}} dx \ F_{3,DIS}^{(0)}(x,Q^2) \frac{(2r-1)}{r^2} r^2$$
$$r \equiv 1 + \sqrt{1 + 4M^2 x^2/Q^2}$$

Perturbatively include effects of the strong interaction

at NLO

LHA PDFs

- The effect of the NLO pQCD correction suppresses the LO prediction by $1-\frac{\alpha_S}{\pi}$
- The running of $\alpha_{EM}(Q^2)$ enhances the box correction by 4% from atomic limit

$$\Box_{A,DIS}^{\gamma W} = 2.29(3) \times 10^{-3} \quad \langle Q^2 \rangle = 12 \text{ GeV}^2$$

Regge Contribution:

At low Q^2 and high W^2 , the strong interaction becomes nonperturbative

Model 1 for F_{3:} Seng, Gorchtein, Ramsey-Musolf, Phys. Rev. Lett. 121, 241804 (2018)

$$F_{3,\text{Reg}}^{(0)}(W^2, Q^2) = \frac{f(1+gQ^2)}{(1+Q^2/m_{\rho}^2)(1+Q^2/m_{a_1}^2)} f_{th}(W) \left(\frac{\nu}{\nu_0}\right)^{\alpha_0}$$

$$f_{th}(W) = \Theta(W^2 - W_{th}^2)(1 - e^{(W_{th}^2 - W^2)/\Lambda_{th}^2})$$

$$W_{th} = M + m_{\pi}$$

The true Q^2 -dependence of this structure function is not well-determined by theory.

VMD Processes:

Diagrams: Seng et. al. Phys. Rev. Lett. 121, 241804 (2018)

<u>Idea</u>: match this function to the well-known value in the DIS region around $Q^2=2~{
m GeV}^2$ AND constrain it from available data on $F_3^{\nu p+\bar{\nu}p}$

$$\frac{F_3^{\nu p + \bar{\nu} p}}{F_2^{(0)}} \approx 9$$
 (more on this later)

Some data exists on the 1st Nachtmann moment of $\ F_3^{\nu p + \bar{\nu} p}$

$$M_3^{\nu p + \bar{\nu} p}(1, Q^2) \Big|_{\text{low } Q^2} = \frac{2}{3} \int_0^1 dx \frac{\xi}{x^2} \left(2x - \frac{\xi}{2}\right) \left[F_{3,\text{el}}^{\nu p + \bar{\nu} p} + F_{3,\text{res}}^{\nu p + \bar{\nu} p} + 9F_{3,\text{Reg}}^{(0)} \right]$$

$$\xi = \frac{2x}{1 + \sqrt{1 + 4M^2 x^2/Q^2}}$$

Data points: T. Bolognese et al., Phys. Rev. Lett. 50, 224 (1983)

$$f = 0.80(3)$$

 $g = 0.63(10) \text{ GeV}^{-2}$

$$\Box_{A,Reg}^{\gamma W} = .37(10) \times 10^{-3}$$

(Model 1 result)

Model 2 for F_{3:} A. Capella *et al.*, Phys. Lett. B **337**, 358 (1994)

$$F_{3,\text{Reg}}^{(0)} = A_{p-n} x^{-\alpha_R} (1-x)^c \left(\frac{Q^2}{Q^2 + \Lambda_R^2}\right)^{\alpha_R}$$

Similarly, we can model the purely axial $\ F_3^{\nu p + ar{
u} p}$ in the same way

P.C. Bosetti et al., Nucl. Phys. B 203, 362 (1982):

also include high-weight data points from DIS region at $Q^2=2~{\rm GeV}^2$

Fit parameters:

$$A_{p+n} = 2.16(3)$$

$$c = 0.61(1)$$

$$\Lambda_R = 0.49(7)$$

Is the ratio really 9?

No! But the observable correction is proportional to $\int_0^1 dx F_3(x, Q^2)$ so taking a ratio of 9 is still meaningful.

Two choices:
$$\begin{cases} A_{p-n} = \frac{A_{p+n}}{I(x)} \Rightarrow \Box_{A,\mathrm{Reg}}^{\gamma W} = 0.34 \times 10^{-3} \text{ (PDF-dependent)} \\ A_{p-n} = \frac{A_{p+n}}{9} \Rightarrow \Box_{A,\mathrm{Reg}}^{\gamma W} = 0.38(4)_{\mathrm{sys}}(3)_{\mathrm{stat}} \times 10^{-3} \end{cases}$$

The Regge contribution is poorly constrained, and multiple models lead to a similar central value, e.g. from gZ axial contribution to Qweak:

$$F_{3,\text{Reg}}^{(0)} = \frac{1+\Lambda^2/Q_0^2}{1+\Lambda^2/Q^2} F_{3,\text{DIS}}^{(0)}(x, Q_0^2), \qquad \Lambda \approx 0.8 \text{ GeV}$$

P.G. Blunden et al., Phys. Rev. Lett. 107, 081801 (2011)

Background Contribution:

The background is a smoothly decreasing curve which goes to 0 at the pion threshold and matches the DIS and Regge regions at $W^2 = 4 \text{ GeV}^2$

By using PDF info and valence quark arguments one can show the proportionality statement:

$$F_{3,\mathrm{bgd}}^{(0)} \sim F_{1,\mathrm{bgd}}^{\gamma\gamma}$$
 at fixed Q^2

Rescaled Bosted-Christy parametrization:

$$F_{3,\text{bgd}}^{(0)} = \eta_S(Q^2) \frac{W^2 - M^2}{8\pi^2 \alpha} \left[1 + \frac{W^2 - (M + m_\pi)^2}{Q^2 + Q_0^2} \right]^{-1} \Sigma_{i=1}^2 \frac{\sigma_T^{NR,i}(0) [W - (M + m_\pi)]^{(i+1/2)}}{(Q^2 + a_i^T)^{(b_i^T + c_i^T Q^2 + d_i^T Q^4)}}$$

$$\Box_{A,\text{bgd}}^{\gamma W} = 0.15(1) \times 10^{-3}$$

this is a similar box contribution as compared to extending the DIS & Regge models up to x=1

Boundary Matching:

- The SF should be continuous over all region boundaries
- All models agree within uncertainties
- The boundaries shown $Q_0^2 = 2 \text{ GeV}^2$, $W_{\min}^2 = 4 \text{ GeV}^2$ are not unique, and we find the total Box correction is insensitive to their choice

Revising Vud: Simple Approach

Total Box correction:

$\Box_A^{\gamma W}(\times 10^{-3})$	SBM	SGRM	CMS
elastic	1.04(6)	1.06(6)	0.99(10)
resonance	0.04(2)	_	_
$DIS + high-Q^2 bgd$	2.29(2)	2.17(0)*	2.16(2)*
$Regge + low-Q^2 bgd$	0.52(7)	0.56(8)	0.36(7)
total	3.89(10)	3.79(10)	3.51(12)

^{*}computed at $\alpha(0) = 1/137.036$

Extract V_{ud} from super allowed beta decays:

$$|V_{ud}|^2 = \frac{2984.43s}{\mathcal{F}t(1+\Delta_R^V)}$$

$$\Delta_R^V = 0.017007 + 2\Box_A^{\gamma W}$$

 $\Delta_R^V = 0.02479(20)$

includes re-summed log

$$\Sigma_{CKM}^{3\times3} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = .9983(4) \neq 1$$

The effect of computing $\Box_A^{\gamma W}$ via a dispersion relation has led to the top row of the CKM matrix to fall short of unitarity by 4σ

Revising Vud: CMS Approach

Total Box correction:

$\Box_A^{\gamma W}(\times 10^{-3})$	SBM	SGRM	CMS
elastic	1.04(6)	1.06(6)	0.99(10)
resonance	0.04(2)	_	_
$DIS + high-Q^2 bgd$	2.29(2)	2.17(0)*	2.16(2)*
$Regge + low-Q^2 bgd$	0.52(7)	0.56(8)	0.36(7)
total	3.89(10)	3.79(10)	3.51(12)

*computed at $\alpha(0) = 1/137.036$

Extract V_{ud} from super allowed beta decays:

$$\begin{split} |V_{ud}|^2 &= \frac{2984.43s}{\mathcal{F}t(1+\Delta_R^V)} \qquad \Delta_R^V = .01671 + 1.022 \bigg[2\Box_A^{\gamma W}(Q^2 \geq Q_0^2) + .00014 \bigg] \\ &\qquad \qquad + 1.065 \bigg[2\Box_A^{\gamma W}(Q^2 < Q_0^2) + 2\Box_{A,el}^{\gamma W} \bigg] \text{ (used by CMS)} \end{split}$$

$$\Sigma_{CKM}^{3\times3} \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = .9982(5) \neq 1$$

The effect of computing $\Box_A^{\gamma W}$ via a dispersion relation has led to the top row of the CKM matrix to fall short of unitarity by 3.8σ

EIC Contribution?

 One could improve the V_{ud} extraction by better constraining the neutral current axial structure functions:

$$F_3^{\nu p + \bar{\nu}p} = F_{3,p}^{\gamma Z} + F_{3,n}^{\gamma Z}$$

$$F_3^{(0)} = F_{3,p}^{\gamma Z} - F_{3,n}^{\gamma Z}$$

Need more data at low Q, low x

 $x = \frac{Q^2}{Q^2 + W^2 - M^2}$

 e^{\pm} DIS cross section:

$$\frac{d^2 \sigma^{NC}}{dx dy} = \frac{4\pi \alpha^2}{xyQ^2} \eta^{NC} \left\{ \left(1 - y - \frac{x^2 y^2 M^2}{Q^2} \right) F_2^{NC} + y^2 x F_1^{NC} \mp \left(y - \frac{y^2}{2} \right) x F_3^{NC} \right\}$$

$$F_3^{NC} \sim -(g_A^e \pm \lambda g_V^e) \eta_{\gamma Z} x F_3^{\gamma Z} + \dots$$